self
Maths Puzzle
Logical Reasoning
Coding Decoding
If x+1/2x=2, find the value of 8x^3+1/x^3
Read Solution (Total 5)
-
- x+1/2x=2
So, 2x+1/x=4.
Now, 8x^3+1/x^3
= (2x)^3 + (1/x)^3
= (2x+1/x)^3 - 3*2x*(1/x)*(2x+1/x)
= 4^3 - 3*2*4
= 40 - 12 years agoHelpfull: Yes(6) No(2)
- (x+1)/2x=2
x+1=4x
x=1/3
now put this value of x in eq (8x^3+1)/x^3,we get
(8(1/3)^3+1)/(1/3)^3
=((8*1/27)+1)/(1/27)
after solving we get (35*27)/27=35(ans) - 12 years agoHelpfull: Yes(2) No(9)
- x+1/2x=2
(2x²+1)/2x= 2
(2x²+1)/x= 4
(2x + 1/x)³ = 8x³ +1/x³ +3*2x*1/x(2x+1/x)
substituting 64 = 8x³+1/x³ +3*2*4
64 = 8x³ +1/x³ +24
8x³ +1/x³ =64 -24 =40 - 12 years agoHelpfull: Yes(2) No(2)
- x+1=4x
3x=1
then,x=1/3.........
so solution of the equation 8x^3+1/x^3 and by putting the value of X and ANSWER =539
MR.J.P. - 12 years agoHelpfull: Yes(1) No(1)
- 8x^3+1/x^3
=1/8*(x^3-1/8x^3)
=1/8*((x+1/x)^3-3*x*(1/2x)*(x+1/x))
=1/8*(2^3-3*(1/2)*2)
=1/8*(8-3)
=5/8 - 12 years agoHelpfull: Yes(0) No(6)
self Other Question