general
Maths Puzzle
if x=y=2z and xyz=256 .what is the original number?
Read Solution (Total 19)
-
- x=8 y=8 z=4
2z*2z*z=256
so z=(64)1/3 =4
z=4 - 12 years agoHelpfull: Yes(10) No(1)
- xyz=256
4z^3=256
z^3=64
z=4
x=y=8 - 12 years agoHelpfull: Yes(3) No(0)
- x=y=2z
z=x/2
xyz=256
replace y & z by x
x*x*(x/2)=256
x^3=512
x=8=y
z=x/2=4
8*8*4=256 - 12 years agoHelpfull: Yes(2) No(0)
- 8
xyz=256
x(x)(x/2)=256
x3=512
x=8 - 12 years agoHelpfull: Yes(1) No(0)
- xyz=256.
replace y by x and z by x/2 in the above equation.
=>x*x*x/2=256
x^3=256*2
x^3=512
x=8 - 12 years agoHelpfull: Yes(1) No(0)
- xyz=256
4z^3=256
z^3=64
z=4
x=y=8 - 12 years agoHelpfull: Yes(0) No(1)
- x=8 y=8 & z=4
- 12 years agoHelpfull: Yes(0) No(0)
- x=2z, y=2z
2z*2z*z=256
4z^3=256
z^3=64
z=4 - 12 years agoHelpfull: Yes(0) No(0)
- X=2z, Y=2z, Z=z
Put these values in XYZ=256
(2z) (2z) (z) = 256
4z^3 =256
Z^3 =64
Z=4
X=2z=2*4=8
Y=2z=2*4=8
answer is X=8, Y=8,Z=4 - 12 years agoHelpfull: Yes(0) No(0)
- xyz=256
2z*2z*z=256
4* z3=256
z3=64
z3==4*4*4
z=4; x=y=8
- 12 years agoHelpfull: Yes(0) No(0)
- X=8
y=8
z=4
so we prove
x=y=2z
ie.8=8=(2*4)
ad nxt
xyz=256
8*8*4=256 - 12 years agoHelpfull: Yes(0) No(0)
- X=8
y=8
z=4
so we prove
x=y=2z
ie.8=8=(2*4)
ad nxt
xyz=256
8*8*4=256 - 12 years agoHelpfull: Yes(0) No(0)
- X=8
y=8
z=4
so we prove
x=y=2z
ie.8=8=(2*4)
ad nxt
xyz=256
8*8*4=256 - 12 years agoHelpfull: Yes(0) No(0)
- X=8
y=8
z=4
so we prove
x=y=2z
ie.8=8=(2*4)
ad nxt
xyz=256
8*8*4=256 - 12 years agoHelpfull: Yes(0) No(0)
- X=8
y=8
z=4
so we prove
x=y=2z
ie.8=8=(2*4)
ad nxt
xyz=256
8*8*4=256 - 12 years agoHelpfull: Yes(0) No(0)
- ans x=8=y,z=4
2z*2z*z=256
4z^3=2
z=4
x=y=2*4=8
8*8*4=256 - 11 years agoHelpfull: Yes(0) No(0)
- 8Z^3=256
Z^3=64
X=Y=2Z=8
- 11 years agoHelpfull: Yes(0) No(0)
- 2z*z*z=256
z=4
y=8
x=8 - 11 years agoHelpfull: Yes(0) No(0)
- 2z*2z*z=256
4z^3=256
z^3=64
z=4 - 11 years agoHelpfull: Yes(0) No(0)
general Other Question