TCS
Company
If P(x)=a*x^4+b*x^3+c*x^2+d*x+e x has roots at x=1,2,3 & 4, and P(0)=48, what is p(5)?
Read Solution (Total 3)
-
- p(x)=k(x-1)(x-2)(x-3)(x-4)
put x=0
p(0)=k(-1)(-2)(-3)(-4)
48=k(24)
k=2
now p(5)=2(4)(3)(2)(1)
p(5)=48 - 12 years agoHelpfull: Yes(26) No(0)
- when roots r given then the expression can b written as:
k(x-1)(x-2)(x-3)(x-4). now p(0)=48
so, k(0-1)(0-2)(0-3)(0-4)=48 so, 24k =48 so, k=2
so p(x)=2(x-1)(x-2)(x-3)(x-4). now p(5)= 2*4*3*2*1=48.
ans=48 - 12 years agoHelpfull: Yes(3) No(0)
- 48
.......
- 12 years agoHelpfull: Yes(0) No(0)
TCS Other Question