TCS
Company
Given 2^74 + 2^2074 + 2^2n. For what value of(among the options)n will the sum be a perfect square?
Read Solution (Total 8)
-
- i think n=2036
- 12 years agoHelpfull: Yes(12) No(5)
- n=1075/2 = 537.5
then
2^74 + 2^2074 + 2^2n = (2^37)^2 +(2^1037)^2 +2* (2^37)*(2^1037)
= (2^74 +2^1037)^2
There may be other possibilities also.
but here options are not given. pls check.
- 12 years agoHelpfull: Yes(12) No(0)
- guys..its a dummy questn..dont mark any optn..
- 12 years agoHelpfull: Yes(7) No(1)
- we know, (a+b)^2= a*a+b*b+2a*b
so 2^74+2^2074+2^2n= (2^37)^2 + 2*2^37*2^n + (2^n)^2
So, we get 38+n=2074
therefoe n = 2036. - 12 years agoHelpfull: Yes(6) No(0)
- ans should be 2036
use (a+b)^2
a=2^37 b= 2^n 2*a*b =2*2^37*2^n ie 2^1+37+n =2^2074
38+n=2074
n=2036 - 12 years agoHelpfull: Yes(2) No(0)
- i think
974..
- 12 years agoHelpfull: Yes(0) No(3)
- we only takes unit place power/4 and remainder place it unit digitso
2^2+2^2+2^2*3/2=16 - 12 years agoHelpfull: Yes(0) No(3)
- 2^2n=2^2*2036
so,n=2036 - 12 years agoHelpfull: Yes(0) No(0)
TCS Other Question