TCS
Company
2^74+2^2048+2^2n what is the value of n so that sum will be perfect square
Read Solution (Total 11)
-
- n=2010
(a+b)^2=a^2 +b^2 +2ab
2^74=a^2
2ab=2^2048
b^2=2^2n - 12 years agoHelpfull: Yes(24) No(5)
- since, (a+b)^2=a^2+b^2+2ab
2^74+2^2n+2^2048=(2^37)^2+(2^n)^2+2^2048
2*(2^37)*(2^n)=2^2048
2^(1+37+n)=2^2048
since base are same ,equating powers,we get
1+37+n=2048
38+n=2048
n=2010 - 12 years agoHelpfull: Yes(16) No(3)
- iam sorry 2010
- 12 years agoHelpfull: Yes(5) No(2)
- (2^34)^2 + 2*2^34*2^n+(2^n)^2 compare with a^2+2ab+b^2
then 35+n=2048 = n=2013 - 12 years agoHelpfull: Yes(4) No(14)
- 2011
n can be any odd no.
- 12 years agoHelpfull: Yes(3) No(7)
- 2^74=(2^34)^2
2^2n=(2^n)^2
2^74+2^2048+2^2n ----------1
IF(2^34)^2+ 2.2^34.2^n+ (2^n)^2 -------------2
=(2^34+2^n)^2 so
from equn 1 &2 2.2^34.2^n must be equal to 2^2048
so (34+1+n)=2048 so n=2048-35=2013(ANS) - 12 years agoHelpfull: Yes(2) No(9)
- ans is 2010
(a+b)^2 = a^2 + 2*a*b + b^2
a^2= (2^37)^2 = 2^74
b^2= (2^2010)^2 = 2^4020
2*a*b = 2* 2^37 * 2^2010= 2^2048 - 12 years agoHelpfull: Yes(2) No(1)
- sai ji aap hamesa confusion m kyun rehti h?
- 12 years agoHelpfull: Yes(2) No(0)
- (A+B)^2=A^2+B^2+2*A*B
(2^37)^2+(2^n)^2+2*(2^37)*(2^2010)AS SAME AS GIVEN EQ.
SO n=2010 ( 2048=37+1+2010) - 12 years agoHelpfull: Yes(1) No(1)
- correct ans is 2013..
- 12 years agoHelpfull: Yes(0) No(9)
- correct ans 1699
- 12 years agoHelpfull: Yes(0) No(1)
TCS Other Question