TCS
Company
If p(x)=a x^4+b x^3+c x^2+d x+e.....has roots at x=1,2,3,4......p(0)=48...then p(5)=?????
Read Solution (Total 5)
-
- P(x)=Q(x-1)(x-2)(x-3)(x-4)
as x=1,2,3,4 are roots of equation...
P(0)=48=Q(-1)(-2)(-3)(-4)
by solving Q=2
so, P(x)=2(x-1)(x-2)(x-3)(x-4)
put x=5
P(5)=2(5-1)(5-2)(5-3)(5-4)
P(5)=48 is the ans. - 12 years agoHelpfull: Yes(26) No(0)
- take p(x) = k(x-1)(x-2)(x-3)(x-4) , where k is a constant
but given p(0) =48
therefore 24 k =48
k=2
p(x) =2(x-1)(x-2)(x-3)(x-4)
p(5)= 2*4*3*2*1 = 48
ans:48 - 12 years agoHelpfull: Yes(5) No(0)
- yes its 48..
- 12 years agoHelpfull: Yes(2) No(0)
- how this formula is applied????
p(x)=Q(x-1)(x-2)(x-3)(x-4) - 12 years agoHelpfull: Yes(2) No(0)
- Please explain clearly not getting.....
- 12 years agoHelpfull: Yes(0) No(0)
TCS Other Question