Elitmus
Exam
Numerical Ability
Number System
find the number of terms between 100 to 1000…..in the format
like 234
2*3*4=24…..find the number of term whose multiple is 24
Read Solution (Total 10)
-
- 138=24,146=24,164=24,183=24
226=24,234=24,243=24,262=24
318=24,324=24,342=24,381=24
416=24,423=24,432=24,461=24
614=24,622=24,641=24
813=24,831=24
answer=21 - 11 years agoHelpfull: Yes(59) No(3)
- A product of 24 can be achieved by (1,3,8), (1,4,6), (2,2,6), (2,3,4)
Now these numbers can be arranged in 3! ways respectively
However 2,2,6 can be arranged in 3!/2! ways
Hence, the answer is 3*3! + 1*3!/2! = 18+3 = 21 - 11 years agoHelpfull: Yes(51) No(0)
- 243: 2*3*4=24
324: 3*2*4=24
342: 3*4*2=24
423: 4*2*3=24
432: 4*3*2=24
226: 2*2*6=24
262: 2*6*2=24
622: 6*2*2=24
- 12 years agoHelpfull: Yes(6) No(8)
- th of digits can be 1,4,6 or 8,1,3 or 2,2,6 or 2,3,4.each can b arranged in 3 ways..
so 4 combinations in 3 ways
so 4*3=12 - 12 years agoHelpfull: Yes(4) No(3)
- 138,183,318,381,813,831
146,164,416,461,614,641
243,234,423,432,324,342
262,622,226
therfore ans is 21 - 10 years agoHelpfull: Yes(2) No(0)
- 234, 243, 324, 342, 432, 423= 6 ways
so,
164= 6 ways
813= 6 ways
and
226= 3 ways
i.e 21 ways. - 9 years agoHelpfull: Yes(2) No(0)
- 234=2*3*4=24
243
324
342
423
432
226
262
622
- 12 years agoHelpfull: Yes(1) No(3)
- th of digits can be 1,4,6 or 8,1,3 or 2,2,6 or 2,3,4.each can b arranged in 3 ways..
so 4 combinations in 3 ways
so 4*3=12 - 12 years agoHelpfull: Yes(1) No(3)
- answer should be 262 , taking hundreds as an even number,we get: ( 843,826,846,866,883,886,889,849) ,(643,626,646,666,683,686,689,649),(443,.......),(243,...) and for odd nos : (138,168,164,198),(338,368,364,398),(538,..),(738,...),(938,...)
total possible combinations= 148(from even) + 114(from odd) =262
please notify me if I'm doing it wrong - 4 years agoHelpfull: Yes(1) No(2)
- 234,164 &183 can be arranged in 6 ways and 226 can be arranged in 3 ways
hence 6+6+6+3=21 - 9 years agoHelpfull: Yes(0) No(0)
Elitmus Other Question