Elitmus
Exam
Numerical Ability
Geometry
A square ABCD is inscribed into the circle. A triangle is formed inside the square with one side CD and other two sides meet at the mid point of AB. Find the ratio of Area of circle to the area of Triangle.
(A) pi (B) pi/2 (C) 2 pi. (D) not remember
Read Solution (Total 7)
-
- Pi is the correct answer
Let X be the side of square
Diagonal will be X*2^1/2
Radius=Diagonal/2
Area of circle=pi*X^2/2
Area of the triangle = 1/2*X*X
So the ratio is pi - 9 years agoHelpfull: Yes(37) No(7)
- A of circle=pi*r^2
a of triangle=1/2*b*h
here b=s,h=s
s^2=2r^2
thus ans will be pi - 9 years agoHelpfull: Yes(3) No(1)
- area of circle/ area of triangle = pi r^2/(1/2*b*h)=pi* (cd/2)^2/(1/2*cd*cd)
PI/2 ANS - 9 years agoHelpfull: Yes(3) No(7)
- let r be radius of circle
ar(circle)=pi*r*r
side of square
a
a*a+a*a=(2*r)^2
a=r*sqrt(2)
area(triangle)=1/2*b*h=(1/2)*r*sqrt2*r*sqrt2=r*r
area(circle)/area(triangle)=pi - 9 years agoHelpfull: Yes(2) No(0)
- ans = c) 2 pi
- 9 years agoHelpfull: Yes(1) No(3)
- area of triangle=1/2*side*side=side^2/2
area of circle=pi*(diagonal/2)^2
diagonal=sqrt(2)side
area of circle=pi*(side)^2/2
ratio=pi(ans) - 7 years agoHelpfull: Yes(0) No(0)
- ans will be pi
- 6 years agoHelpfull: Yes(0) No(0)
Elitmus Other Question