Elitmus
Exam
Numerical Ability
Algebra
1/x+1/y=1/z where x=12 and y,z positive integer how many possible value of y and z ?
a) 4
b) 7
C) 12
d) infinite
Read Solution (Total 8)
-
- Correct Ans = b) = 7
---------Explanation------------
1/12 = 1/z - 1/y
y = 12 * z / ( 12 - z )
0 < z < 12
Only for z = 3 ,4 ,6 ,8 , 9 ,10 and 11 , y is intiger
Hence seven solutions - 9 years agoHelpfull: Yes(25) No(0)
- 1/x+1/y=1/z
on putting x=12 and solving the eq we get
y=12z/12-z
y is +integer hence z should be 1 to 11
out of which z=3,4,6,8,9,10,11 are possible
hence required sol be 7
- 9 years agoHelpfull: Yes(2) No(0)
- 1/z -1/y = 1=12
(y-z)/1 =yz/12
let (y-z)/1 =yz/12=p
y-z=p
yz=12p .:y,z are positive integer then p is positive integer number
y=z+p
z(Z+p)=12p
Z^2 +zp - 12p=0
use
b^2 -4ac
p^2 - 4(-12p)*1
p^2 + 48p
then p positive integer
p^2 + 48p >0
infinite - 9 years agoHelpfull: Yes(0) No(2)
- jitendra , how can u say p is + integer ..... p can be + real number or a - integer if yz is not divisible by 12 or y
- 9 years agoHelpfull: Yes(0) No(0)
- 1/12 = 1/ z- 1/y = (y-z) /yz => 12( y-z) = yz,
12 y -12 z =yz
y = z ( 1+( y /12))
y = 12z / (12 + z)
now put the values of z which r multiples of 12 such that if z =12k then
y = 12 * 12 k / 12 +12k
y= 12k / k+1 now choose k s.t. k+1 always divides 12put k = 1,2,3 , 5 and 11 we get
z=12 , y=6 ......1
z= 24 , y=8.......2
we can say option a) is correct - 9 years agoHelpfull: Yes(0) No(0)
- awnser should be 7
on solving we get y=12z/12-z
y should be +ve and intiger
so only possible value of z for y=+ve and an integer is 3,4,6,8,9,10,11
so awnser should be option (b) 7
- 9 years agoHelpfull: Yes(0) No(0)
- The pattern would be somewhat like this
12(y-z)=yz
4---3 (12)*(4-3)=4*3
6---4
12--6
24--12
so ans=4 hence a - 9 years agoHelpfull: Yes(0) No(2)
- 1/x=1/y+1/z
1/12=1/y+1/z
12=y+z
z=12-y
so y should be between 0 to 11 to make z positive integer so ans is 12
- 9 years agoHelpfull: Yes(0) No(0)
Elitmus Other Question