TCS
Company
Numerical Ability
Algebra
What is the remainder of f(x^7) when divided by f(x)?
f(x) =1+x+x^2+x^3+...+x^7
Read Solution (Total 5)
-
- the ans is 7
- 9 years agoHelpfull: Yes(4) No(4)
- a/c to me ans will be 0
f(x)=1+x+x^2+...+x^7
f(x^7)=1+x^7+x^14+x^21+....x^49
f(x^7)=1+x^7(1+x^2+x^3+...x^7)
f(x^7)/f(x)=1+x^7(1+x+x^2+x^3+..+x^7-x)/f(x)
f(x^7)/f(x)=[1+x^7(f(x)-x)]/f(x)
=1+x^8 it can be represented as
(1-x)(1+x+x^2++...+x^7) which is divisible by f(x)
so rem=0
- 9 years agoHelpfull: Yes(2) No(4)
- ans must be 7
- 9 years agoHelpfull: Yes(1) No(0)
- can any 1 explain it clearly??????????
- 9 years agoHelpfull: Yes(1) No(0)
- f(x)= 1+x+x^2+x^3+....+x^7
f(x^7) = 1+x^7+x^14+x^21+.....+x^49
Now. to get the remainder we can write above equations as :
Remainder = f(x^7) - x^7*f(x) = 1 - x^8 - 9 years agoHelpfull: Yes(0) No(5)
TCS Other Question