TCS
Company
Numerical Ability
Algebra
If f(x)=x^4+ax^3+bx^2+cx+d such that f(1)=f(2)=f
(3)=f(4), find the value of b.
Can anybody tell me the answer with proper
explanation?
Read Solution (Total 2)
-
ans b=35
f(1)=1+a+b+c+d
f(2)=16+8a+4b+2c+d
f(3)=81+27a+9b+3c+d
f(4)=256+64a+16b+4c+d
given
f(1)=f(2)=f(3)=f(4)
firstly
f(1)=f(2)
1+a+b+c+d=16+8a+4b+2c+d
7a+3b+c=-15...........................................................equ(1)
then
f(1)=f(3)
we get
13a+4b+c=-40...........................................................equ(2)
then
f(1)=f(4)
we get
21a+5b+c=-85..........................................................equ(3)
solve equ(2)-equ(1)
we get
6a+b=-25......................................equ(4)
solve equ(3)-equ(2)
we get
8a+b=-45......................................equ(5)
solve equ(4) and equ(5) and put the value in other equactions for all the values
we get
a=-10 ,b=35,c=-50
proof
put the value of a ,b,c
we get
f(1)=f(2)=f(3)=f(4)
- 9 years agoHelpfull: Yes(45) No(1)
- i ansrwed it can't be determined in exam
- 9 years agoHelpfull: Yes(2) No(2)
TCS Other Question