Elitmus
Exam
Numerical Ability
Number System
The sum of how many terms of the series 6 + 12 + 18 + 24 + … is 1800 ?A)16B)24C)20D)18E)22
Read Solution (Total 11)
-
- ANS->B. 24
1800=N/2[2A+(N-1)D] - 8 years agoHelpfull: Yes(18) No(1)
- Let the number of terms be N.
Then, according to the formula,
=> 1800 = N/2[2A+(N-1)D] , where A = First-Term, D = Common-Difference.
=> 3600 = N[12 + (N-1)6]
=> 3600 =N[6 + 6N]
=> 6N^2 + 6N - 3600 = 0.
=> 6N^2 + 150N - 144n - 3600 = 0
=> 6N(N + 25)-144(N+25)
=> N = -25, 24
Hence, the number of terms is 24. - 8 years agoHelpfull: Yes(9) No(2)
- if you take 6 common among all number then it can be easily solve using n(n+1)/2.
- 8 years agoHelpfull: Yes(3) No(8)
- sum of the numbers to a number n is n(n+1)/2
so 6*(n(n+1)/2)=1800
n(n+1)/2=300
on solving ,n=24 - 8 years agoHelpfull: Yes(2) No(0)
- 300 terms of series gives 1800.
- 8 years agoHelpfull: Yes(1) No(11)
- we will solve it by sum of n terms....s=n/2[2a +(n-1)d]...........so ans.will be 24
- 8 years agoHelpfull: Yes(1) No(0)
- =6*1+6*2+6*3+6*4+..........
=6(1+2+3+4+.............up to n terms)
= 6( sum of first n terms )
=> 6(n(n+1)/2) = 1800
by solving above we get n= 20 - 8 years agoHelpfull: Yes(1) No(3)
- a=6;d=6;s=1800
1800=n/2[2a+(n-1)d]
1800=n/2[12+6n-6]
1800=n/2[6+6n]
1800=n[3+3n]
600=n(1+n)
600=24*25
n=24 - 8 years agoHelpfull: Yes(1) No(0)
- last term=a+(n-1)d
1800=6+(n-1)6
300=1+(n-1)
n=300 - 8 years agoHelpfull: Yes(0) No(13)
- 24. Since, n2+n-600=0, n=24
- 7 years agoHelpfull: Yes(0) No(0)
- Visit This site
https://worldmostpopularpeople.blogspot.in
lets know about succesful People story
read this story - 7 years agoHelpfull: Yes(0) No(0)
Elitmus Other Question