Elitmus
Exam
Numerical Ability
Algebra
If 1/a+1/b+1/c=1/(a+b+c) where a+b+c not equals=0, abc not equals=0, what is the value of (a+b) (b+c) (A+c)...??
a. Equals 0
b.Greater than 0
c.Less than 0
d. Can't be determined
Read Solution (Total 3)
-
- let assume the value of a,b &c that will satisfy the equation.
so a=1,b=1,c= -1 or a=1,b= -1 &c=1 or a= -1,b=1,c=1
here all three cases satisfy the equation
assume any one a=1,b=1,c= -1
hence (a+b)(b+c)(c+a)=(1+1)(1-1)(-1+1)=0 - 7 years agoHelpfull: Yes(8) No(0)
- 1/a+1/b+1/c= 1/(a+b+c)
=> (a+b+c)/a+(a+b+c)/b+(a+b+c)/c=1
subtracting 3 both side,
=> [(a+b+c)/a]-1+[(a+b+c)/b]-1+[(a+b+c)/c]-1=1-3
=> (b+c)/a+(a+c)/b+(a+b)/c = -2
adding 2 both side,
=> [(b+c)/a+(a+c)/b+(a+b)/c]+2 = -2+2
=> (bc(b+c)+ ac(a+c)+ab(a+b))/(abc) + 2 = 0
=> [bc(b+c)+ ac(a+c)+ab(a+b)]+2abc = 0*abc
=> bc(b+c)+ ac(a+c)+ab(a+b)+2abc=0
=> b^2c+c^2b+a^2c+c^2a+a^2b+b^2a+2abc=0
=> a(b^2+ 2bc+c^2) + a^2 b+ a^2c + b^2 c +bc^2 =0
=> a(b+c)^2 + a^2(b+c) + bc(b+c) =0
=> (b+c) [ a^2 +a(b+c)+ bc]=0
=> (b+c) [ a^2 +ab+ac+ bc]=0
=> (b+c) [ a(a+b)+c(a+b)]=0
=> (b+c)(a +b)(c+a)=0 - 7 years agoHelpfull: Yes(7) No(0)
- 1/a+1/b+1/c = 1/(a+b+c)
take lcm:
(bc+ca+ab)/abc = 1/(a+b+c)
abc+ ca^2+a^2b+b^2c+cab+ab^2+bc^2+c^2a+abc= abc
b^2c+c^2b+a^2c+c^2a+a^2b+b^2a+2abc=0
a(b^2+ 2bc+c^2) + a^2 b+ a^2c + b^2 c +bc^2 =0
a(b+c)^2 + a^2(b+c) + bc(b+c) =0
(b+c) [ a^2 +a(b+c)+ bc]=0
(b+c) [ a^2 +ab+ac+ bc]=0
(b+c) [ a(a+b)+c(a+b)]=0
(b+c)(a +b)(c+a)=0 - 7 years agoHelpfull: Yes(0) No(0)
Elitmus Other Question