MBA
Exam
Let Sm denote the sum of the squares of first m natural numbers. For How many values of m<100,is Sm a multiple of 4? 1) 50 2) 25 3) 36 4) 24
Read Solution (Total 2)
-
- 24
Sm=(1^2 +2^2+....+m^2)=m(m+1)(2m+1)/6,
if the sum is divisible by 4 then ,we can say that " m(m+1)(2m+1)/24 " will be an integer.
from (1-10) => 7,8
(11-20)=>15,16
..........................
(91-99) => 95,96
so here we get an AP i.e.
7,8,15,16.......95.96. => 7,15,.... ,95 && 8,16, ...... , 96
number of terms in both series are,
12+12=24 - 10 years agoHelpfull: Yes(1) No(1)
- its 24
Sm=(1^2 +2^2+....+m^2)=m(m+1)(2m+1)/6 - 10 years agoHelpfull: Yes(0) No(0)
MBA Other Question