MBA Exam

Suppose for any real number x, [x] denotes the greatest integer less than or
equal to x. Let L(x, y) = [x] + [y] + [x + y] and R(x, y) = [2x] + [2y]. Then it
is impossible to find any two positive real numbers x and y for whichPlease explain the solution

1) L(x, y) = R(x, y)
2) L(x, y) not equal R(x, y)
3) L(x, y) < R(x, y)
4) L(x, y) > R(x, y)

Read Solution (Total 0)

MBA Other Question

Given “a” is a positive integer find the smallest positive integer “b” such that 23a divides b3113 +1.

1) 8<sup>a</sup> – 3
2) 4<sup>a</sup> – 5
3) 2<sup>a</sup> – 3
4) 2<sup>3a</sup> –2
5) 2<sup>3a</sup> – 1
Let u(n+1)= 2*u(n) + 1 for all n =(0, 1, 2, 3, 4, 5, 6,...)u(0)=0Then u(10) shall be closest to??CAT 1993

1) 1023
2) 2047
3) 4095
4) 8195