Elitmus
Exam
Numerical Ability
Algebra
If a2+b2-4(a+b)= -8,then the value of (a-b) is:
A. 4 B. 0 C. 2 D. 8
Read Solution (Total 6)
-
- ANS. B. 0
EXPLANATION
(a^2 -4a + 4) + (b^2 - 4b + 4) - 8 = -8
(a-2)^2 + (b-2)^2 = 0
Sum of two squares will be zero only when both of them are zero.
So a-2 =0, b-2 = 0,
a=2 and b=2
and (a-b)=0 - 7 years agoHelpfull: Yes(8) No(1)
- Ans.assume value a=2 and b=2
a-b =0 - 7 years agoHelpfull: Yes(5) No(3)
- a^2 +b^2 -4(a+b)=-8
or a^2+b^2-4a-4b+8=0
or a^2 +b^2-4a-4b+4+4=0
or a^2-4a+4 +b^2-4b+4=0
or (a-2)^2 +(b-2)^2=0
From here a=2 b=2 proved - 7 years agoHelpfull: Yes(3) No(0)
- Pallabhi .... here square is given...not multiplication by 2.
- 7 years agoHelpfull: Yes(1) No(0)
- I am not getting the point ... how can I directly assume it ? please specify
- 7 years agoHelpfull: Yes(1) No(0)
- A.4
a2+b2-4(a+b)= -8
2a+2b-4a-4b=-8
-2a-2b=-8
2(-a-b)=-8
2(-3-1)=-8
so a-b=4 - 7 years agoHelpfull: Yes(0) No(10)
Elitmus Other Question