MBA
Exam
Find the smallest possible integer n for which (2^2-1)(3^2-1)(4^2-1).....(n^2-1) is a perfect square.With explanation please.... 1) 2 2) 4 3) 8 4) 6
Read Solution (Total 1)
-
- 8
(2^2-1)(3^2-1)(4^2-1).....(n^2-1)
(2+1)(2-1)(3+1)(3-1)(4+1)(4-1)....(n-1)(n+1)
= 3*1*4*2*5*3*6*5......(n-1)(n+1)
= 1*2*3^2*4^2*5^2*....*(n^2)*(n+1)
For minimum value of n=8 , the product is a perfect square. - 11 years agoHelpfull: Yes(0) No(0)
MBA Other Question