TCS
Company
a^x=b, b^y=c, c^z=a ..then what is the value of x*y*z?.
Read Solution (Total 10)
-
- ANS:1
if a^x=b , then x=log b/log a
similarly y= log c/log b
z=log a / log c
therefore x*y*z = 1 - 11 years agoHelpfull: Yes(34) No(0)
- ans is 1, take a^x=b now log both side xloga=logb from here we get x=logb/loga, similary we get y=logc/logb and z=loga/logc, now x*y*z=1;
- 11 years agoHelpfull: Yes(5) No(0)
- a^(x*y)=c,a^(x*y*z)=a,
x*y*z=1(since bases are equal so powers should be equal) - 11 years agoHelpfull: Yes(3) No(0)
- Here we go:
Put "log" on all three equations:
They will appear as:
x=(log b/log c) ; y= (log c/log b); z=(log a/log c)
x*y*z=1
Answer : 1 - 11 years agoHelpfull: Yes(1) No(0)
- 1
taking log both sides
x loga=logb => x=logb/loga
y logb=logc => y=logc/logb
z logc=loga => z=loga/logc
x*y*z=logb/loga*logc/logb*loga/logc=1 - 11 years agoHelpfull: Yes(1) No(0)
- if x=y=z=1
then a=b=c
so this satisfy the condition so
xyz=1............... - 11 years agoHelpfull: Yes(1) No(0)
- a^x=b
b^y=(a^x)^y
c^z=a=((a^x)^y)^z
hence x*y*z=1
- 11 years agoHelpfull: Yes(1) No(0)
- (((a^x)^y)^z)=a
=>xyz=1 - 11 years agoHelpfull: Yes(0) No(0)
- step1:- taking log both side:-
log(a^x)=logb, log(b^y)=logc,log(c^z)=loga
step2:-
x*loga=logb,y*logb=logc,z*logc=loga
step3:-
x=logb/loga,y=logc/logb,x=logc/loga
put all this value in eq x*y*z
nd ans is 1.. - 11 years agoHelpfull: Yes(0) No(0)
- a^x=b taking log both side
x=logb/loga
simillarly y=logc/logb and z=loga/logc
So x*y*z=1... Ans: 1 - 11 years agoHelpfull: Yes(0) No(0)
TCS Other Question