Miscellaneous Company Exam
Company
undefined
WHAT WILL BE THE VALUE OF
log e(e(e....)^1/2)^1/2)^1/2).....log base is e
Read Solution (Total 3)
-
- e(e(e....)^1/2)^1/2)^1/2 = e ^ (1/2 + 1/4 + 1/8 +....)
it is in G.P(Geometric progression) then sum to infinite terms = (a)/(1-r)
(1/2 + 1/4 + 1/8 +....) = (1/2)/(1-1/2) = 1
so e ^ 1
log(e^1) base e = 1
answer is 1; - 12 years agoHelpfull: Yes(10) No(2)
- e(e(e....)^1/2)^1/2)^1/2)=x
or,ex=x^2
0r,x=e
so ans will be 1 - 13 years agoHelpfull: Yes(8) No(16)
- let (e(e(e....)^1/2)^1/2)^1/2)=x then
we can write
x=(ex)^1/2 why....?
x=e^1/2*x^1/2
or
x^1/2=e^1/2
or
x=e
so rewrite log (e(e(e....)^1/2)^1/2)^1/2) as log e with base e
which will be 1. - 10 years agoHelpfull: Yes(1) No(1)
Miscellaneous Company Exam Other Question