TCS
Company
Logical Reasoning
Logical Sequences
(40*40*40 - 31*31*31)/(40*40+40*31+31*31)=?
option
a) 8
b) 9
c) 71
d) 51
Read Solution (Total 12)
-
- This question is based on this....
(a^3 - b^3)/(a^2 + ab + b^2) where a=40 and b=31
a^3 - b^3 = (a-b)(a^2 + b^2 + ab)
so we get (a-b)(a^2 + b^2 + ab)/(a^2 + b^2 + ab) where a=40 and b=31
now finally we get (a-b) so (40 - 31)= 9
therefore option (b) will be the answer - 11 years agoHelpfull: Yes(27) No(0)
- let a=40 and b=31 now we get (a^3)-(b^3)/(a^2+a*b+b^2)=a-b.
so answer is 40-31=9 - 11 years agoHelpfull: Yes(2) No(0)
- Ans:c
sol: (a3+b3)/(a2+ab+b2)
=(a2+b2+ab)(a+b)/(a2+b2+ab)
= a+b
=40+31
=71 - 11 years agoHelpfull: Yes(1) No(6)
- let a =40
b=31
then
(a^3-b^3)/(a^2+ab+b^2)
(a-b)(a^2+b^2+ab)/(a^2+ab+b^2)= a-b
40 - 31
9
- 11 years agoHelpfull: Yes(1) No(0)
- @SINDHURA
bt still u are wrong because formula of
a^3 + b^3 = (a + b)/(a^2 + b^2 -ab) bt u hav written (a + b)/(a^2 + b^2 + ab)
:) - 11 years agoHelpfull: Yes(1) No(1)
- sorry...
a^3 + b^3 = (a +b)*(a^2 + b^2 -ab) - 11 years agoHelpfull: Yes(1) No(1)
- ans:b)9
let a=40 & b=31
now, (a^3-b^3)/(a^2+b^2+ab)
={(a-b)*(a^2+b^2+ab)}/(a^2+b^2+ab)
=(a-b)
=9 - 11 years agoHelpfull: Yes(0) No(1)
- oh there is minus over there .......
- 11 years agoHelpfull: Yes(0) No(0)
- 9...
apply a^3-b^3 formula - 11 years agoHelpfull: Yes(0) No(0)
- (40^3)-(31^3)=(40-31)(40^2+40*31+31^2)
so ans is 9 - 11 years agoHelpfull: Yes(0) No(0)
- we will use a^3 - b^3
therefore:
the numerical can be written as 40^3 - 31^3 = (40-31)*(40^2 + 40*31 + 31^2)/(40^2 + 40*31 + 31^2)
hence 40-31 = 9 - 11 years agoHelpfull: Yes(0) No(0)
- APPLY BODMAS
ANS IS 9
- 11 years agoHelpfull: Yes(0) No(0)
TCS Other Question