Elitmus
Exam
FIND THE MAXIMUM AND MINIMUM VALUE OF EXPRESSION 100^x(log (base x)4 -log (base x^1/2)2...if x>1..
a)0,infinity
b)-infinity,infinity
c)-infinity,0
d) none of them
Read Solution (Total 2)
-
- 100^x(logx(4)+-logx^1/2(2)) = 100^x[(loge(4)/loge(x)) - (loge(2)/loge(x)^1/2)]
=> 100^x[(2loge(2)/log2(x)) - (loge(2)/{(1/2)*loge(x)})]
=>100^x[(2loge(2)/log2(x)) - 2loge(2)/loge(2)] = 0 ,,,, now how to find the max and min value - 11 years agoHelpfull: Yes(1) No(0)
- 100^x (log(basex)4-log(base^0.5)2)
=100^x{(log4/logx)-(log2/0.5logx)}
=100^x {(log4/logx)-(log4/logx)}
=100^x * 0
=0
ans: none of them - 8 years agoHelpfull: Yes(0) No(0)
Elitmus Other Question