TCS
Company
For the king’s revelry 254 barrels of beer have b een ordered . howerver, it was found that one of them is poisoned. The poison takes effect even if consumed in the tiniest amount after 14 hours. Yhou need to find within 24 hours the poisoned barrel and have at your disposal some beer guzzling mice. The smallest number of mice required to find the poisoned barrel is
9
8
254
7
Read Solution (Total 8)
-
- answer is 8 mouse.
- 13 years agoHelpfull: Yes(46) No(3)
- 2^8=256>254
so the ans is 8.
becoz in the option here 1 is not given,if 1 is given then 1 will be the correct ans. - 13 years agoHelpfull: Yes(9) No(9)
- for this we need 254 mice . there is only 24 hours and it takes 14 hour to finish 1 test . so there is only time to do it once so we need minimum 254 mice.
- 13 years agoHelpfull: Yes(7) No(28)
- EASY WAY IS
- 13 years agoHelpfull: Yes(3) No(9)
- @RAVI SINGH - plzzz give process...
- 13 years agoHelpfull: Yes(3) No(3)
- koi dhang se smjhaado
- 12 years agoHelpfull: Yes(3) No(0)
- No Thing Is Given ABout Time Taken By Mice To Check The Can Or Any Thing Else So Min Num Is 7
- 13 years agoHelpfull: Yes(1) No(19)
- answer is c
If 1 is given in the option then the aanswer for these type of question will always be 1, because we can use 1 mouse to check wether the barrel is poisoned or not ---- u can solve it simply by naming barrels say A1,A2......A30....now inject beer from A1 to that mice and note the timing at which u r performing ur experiment say at 10pm and with diference of 1 sec....inject beer from all the barrels respectively as there are 30 barrels and now after 14 hours note the death timings of mice supose if it dies at 12pm next day the poison is in first barrel that is A1....if it dies at 12.01 hrs then the poison is in barrel A2.....n likewise for others!!..
But here 1 is not given in the option so we will use the formula :--- 2^n > no. of barrels , where n will be the number of mice. Note n should be the number with which the value of 2^n becomes just greater than number of barrels, not far greater than no. of barrels, this is because we need an optimal solution.
thnaks - 8 years agoHelpfull: Yes(1) No(0)
TCS Other Question