TCS
Company
12341234123412....................400 digits.when divided by 909 leaves remainder ??
Read Solution (Total 6)
-
- 12341234.......400 digits
1234*10^396 + 1234*10^392 + 1234*10^388....1234*10^8 + 1234*10^4 + 1234*10^0
1234(10^396 + 10^392 + 10^388 +.........10^4 + 10^0)
now...10^0/909=1......10^4/909=1.....similarly all the powers of 10 mentioned above leaves remainder 1
1234(10^396 + 10^392......10^0)/909
1234(1+1+1+1+....100 times)and 1234/909=325 remainder
325*100=32500
32500/909=685 as remainder
thanxx to akash srivatava - 11 years agoHelpfull: Yes(17) No(5)
- 12341234.......400 digits
1234*10^96 + 1234*10^92 + 1234*10^88....1234*10^8 + 1234*10^4 + 1234*10^0
1234(10^96 + 10^92 + 10^88 +.........10^4 + 10^0)
now...10^0/909=1......10^4/909=1.....similarly all the powers of 10 mentioned above leaves remainder 1
1234(10^96 + 10^92......10^0)/909=
1234(1+1+1+1+....25 times)and 1234/909=325 remainder
325*25=8125
8125/909=853 as remainder - 11 years agoHelpfull: Yes(16) No(17)
- by divisiblity prop..
1+2+3+4=10
there are 100 such sequences in 400 digits.. so 100*10=1000
1000mod909=91 - 11 years agoHelpfull: Yes(3) No(3)
- ans is 3
- 11 years agoHelpfull: Yes(1) No(8)
- @ Bharat can u plzzzzzzz tel that (10^396........10^0) mod 909,how remainder is 1...in each ,,,,,,,,if it was 99 ,den it shud b 1,how here,plzzzzzzzzzzzz tel
- 11 years agoHelpfull: Yes(0) No(0)
- 8125/909=853 as remainder
- 11 years agoHelpfull: Yes(0) No(0)
TCS Other Question