TCS
Company
Numerical Ability
Age Problem
The difference between two no is 9 and the product of the two is 14.What is the square of their sum?
Read Solution (Total 8)
-
- they ask for square of their sum i.e.,
(a+b)^2=(a-b)^2+4ab
=(9*9)+4*14
=137
- 13 years agoHelpfull: Yes(64) No(10)
- Use the formula,(x-y)^2 = x^2 + y^2 - 2xy ,x^2 + y^2 = 81+28 = 109
- 13 years agoHelpfull: Yes(9) No(55)
- given:-
a-b=9 and ab=14
=> (a-b)^2 + 4ab = (a+b)^2
=> (9*9) + (4*14) =(a+b)^2
=> (a+b)^2 = 137 - 9 years agoHelpfull: Yes(4) No(0)
- given,
10x-y=9 ...... eq(1)
10x*y=14.....eq(2)
now squaring both side eq (1) gives.....
10x^2 + y^2 - 2*10x*y=9*9
10x^2 +y^2 = 81+2*14 =109
- 9 years agoHelpfull: Yes(0) No(4)
- given: x-y = 9
xy = 14
(x-y)^2 = x^2 + y^2 - 2xy
81 = x^2 + y^2 -2*14
109 = x^2 + y^2 - 9 years agoHelpfull: Yes(0) No(4)
- we know that
(x+y)^2=(x-y)^2+4xy.....equation (i)(basic formulae)
now putting the values of x-y and xy in equation (i)...we had
(x+y)^2=(9)^2+4*14
=81+56
=137(which is the required answer)
- 8 years agoHelpfull: Yes(0) No(0)
- 109
(x-y)^2=x^2+j^2-2xy - 6 years agoHelpfull: Yes(0) No(0)
- Solution formula (a-b)^2+4ab
- 2 years agoHelpfull: Yes(0) No(0)
TCS Other Question