TCS
Company
Logical Reasoning
Number Series
find last 3 digits.......2988^687^241?
Read Solution (Total 5)
-
- After reading this, you'll kill yourself
2988^687^241 mod 1000
=988^687^241 mod 1000
let 687^241 be n
988^n mod 1000
247^n mod 1000 * 4^n mod 1000
first for 247^n mod 1000
lambda(1000)=100
so, we need 687^241 mod 100
lambda(100)=20
241 mod 20=1
687^1 mod 100 = 87 mod 100 or -13 mod 100
now,
247^(-13) mod 1000
multiplicative inv of 247 is 583
583^13 mod 1000
863
now for 4^n mod 1000
=(2^(2n-3) mod 125)*8
lambda(125)=100
So, we need 687^241 mod 100 = 87 mod 100 (already calculated)
So n=87
2*n-3= 171
(2^171 mod 125)*8
=(2^71 mod 125)*8 (Since 171 mod 100 =71)
reduce using 2^(10*7+1) mod 125
you'll get
(98 mod 125)*8
=784
now 784*863 mod 1000
=592(ans)
- 11 years agoHelpfull: Yes(4) No(16)
- 512 is the answer.
- 11 years agoHelpfull: Yes(4) No(1)
- Just explain in simple way
- 11 years agoHelpfull: Yes(3) No(1)
- 272 is d ans...
- 11 years agoHelpfull: Yes(1) No(1)
- @prateek bhai jo tm concept diye ho kafi kara h
- 11 years agoHelpfull: Yes(0) No(1)
TCS Other Question