TCS
Company
1-2+3-4+5-6+...................-98+99=??
Read Solution (Total 13)
-
- ANS IS 50
taking + digits and - digits separately
for (1,3,5,7......97,99) and by applying AP WE GET SUM AS 2500
FOR (2,4,6....,96,98) AND BY APPLYING AP WE GET -2450
SO TAKING 2500-2450=50 ANS - 11 years agoHelpfull: Yes(31) No(0)
- 1-2+3-4+5-6+........-98+99
= (1-2)+(3-4)+(5-6)+.....+(97-98)+99
= -1-1-1-1.............-1(49th)+99
= -49+99 (as every bracket gives -1 and total no. of bracket is 49 so -49)
= 50 ans. - 11 years agoHelpfull: Yes(15) No(0)
- 1-2+3-4+5-6+ . . -98+99
= (1+3+5+7...+99) - (2+4+6+8....+98)
According to AP, if we know the first and last term and the total numbers then,
AP = n/2(a+a(n)) where a is the first number and a(n) is the last number.
Total odd nos. between 1 to 99 = 50
Total even nos. between 2 to 98 = 49
=> (1+3+5+7...+99) - (2+4+6+8....+98) = {50/2(1+99) - 49/2(2+98)}
=> 25*100 - 50*49
=> 2500 - 2450
= 50
Answer is 50. - 11 years agoHelpfull: Yes(13) No(0)
- We have to divide this sum into two parts :
1+3+5+7......+99
And
+(-2)+(-4)+(-6)+(-8).......+(-98)
Using the A.P formula, we get,
L= a+(n-1)d
where L= Last term , a= First term , n= Number of terms , d= Difference
In first case,1+3+5+7......+99
a=1, L=99, d=2
So, 99=1+(n-1)2
=> (n-1)2 =98
=> n-1=49
=> n=50
So, the sum of 1+3+5+7......+99= n/2(a+L)=50/2(1+99)=25×100=2500
In the 2nd case,+(-2)+(-4)+(-6)+(-8).......+(-98)= -(2+4+6+8.....+98)
Here, a=2, d=2 and L=98
So, L=a+(n-1)d
=> 98=2+(n-1)2
=> (n-1)2=96
=> n-1=48
=> n=49
So the sum of (2+4+6+8.....+98)=n/2(a+L)=49/2(2+98)=(49×100)/2=49×50=2450
Therefore, 1-2+3-4+5-6+...................-98+99=(1+3+5+7......+99)-((2+4+6+8.....+98)=2500-2450=50
- 11 years agoHelpfull: Yes(11) No(0)
- (1+3+5+.....+99)-(2+4+6+........+98)
=50/2 (1+99)-49/2 (2+98)
=2500-2450
=50.........ri8........... - 11 years agoHelpfull: Yes(3) No(0)
- taking 1 appart
(-2+3)+(-4+5)+..... ==> (1)+(1)+.....
1 to 99 means 99 digits..
neglecting 1 for a while
there are 98 digits...
98/2=49
49*1+1= 50
so, 50 is the ans - 11 years agoHelpfull: Yes(2) No(0)
- 1st series::
1,3,5,........99
In A.P with d=2 and a=1
To find Sn find n?
As we know,An= a+(n-1)d
So,here 99=1+(n-1)2
2n-1=99 or 2n=100
n=50
Thus Sn=n/2(2a+(n-1)d)
so Sn=50/2(2+98)=25*100=2500
2nd series::
-2,-4,-6,.........-98
AP with d=2,a=-2 and n=49 from (An=a+(n-1)d)
So Sn=49/2(-4+(48*-2)=49/2(-100)=49*-50=-2450
HENCE Sum of both the series gives the ANSWER:::2500-2450=50 - 11 years agoHelpfull: Yes(2) No(0)
- (1+3+........+99)-(2+4+.....+98)
apply A.P on both we get 2500-2450=50 - 11 years agoHelpfull: Yes(2) No(0)
- Answer is 50.
- 11 years agoHelpfull: Yes(2) No(1)
- 1-2+3-4+......97-98+99
-1+-1+.....+99= -49+99=50 - 11 years agoHelpfull: Yes(2) No(0)
- odd terms are +VE and even are -VE.
1+99=100
-2-98=-100
.
.
.
47+53=100
-48-52=-100
upto these all nullify 100-100=0
ans is=> 49+51-50=50
- 11 years agoHelpfull: Yes(1) No(0)
- i think first 6 digit sum= -3. then -3+7=+4. similarly ..........+99=+50 ans.
- 11 years agoHelpfull: Yes(0) No(0)
- we can write this like,
(1+3+5+7........99)-(2+4+6+....98)
(2500)-(2450)-50 - 11 years agoHelpfull: Yes(0) No(0)
TCS Other Question
1,7,8,49,50,56,57,343,344,350,351,399,400
A number has exactly three prime factors.125 factors of this number are perfect squares. 25 number of factors are perfect cube.What is the minimum number of factors possible for this number....
1. 343
2. 512
3. 1000
4.729