TCS
Company
a+b=3;a^2+b^2=7;then a^4+b^4=?
Read Solution (Total 6)
-
- Ans: 47
Given: a+b=3 a^2+b^2=7 , (a+b)^2=a^2+b^2+2ab therefore,9=7+2ab ab=1;
Soln:
a^4+b^4 = (a^2)^2 + (b^2)^2= (a^2+b^2)^2 -2((ab)^2)
a^4+b^4= 7^2 -2(1^2)
= 49-2=47
- 11 years agoHelpfull: Yes(19) No(0)
- answer is 47
- 11 years agoHelpfull: Yes(2) No(1)
- after solving we get ab=1,
then simplifying the power of a^4+b^4
and putting the values we get 47. - 11 years agoHelpfull: Yes(2) No(1)
- a+b=3
a^2+b^2=(a+b)^2-2(a*b)
so on solving,ab=1
similarly
a^4+b^4=(a^2+b^2)^2-2(a^a*b^b)
=7^2-2*(a*b)^2
=49-2(1)
=47
on solving,it results 47 - 11 years agoHelpfull: Yes(0) No(1)
- Answer is 47
(a+b)^2=a^2+b^2+2*a*b
9=7+2*a*b
a*b=1
we know that, (a^2+b^2)^2 = a^4 + b^4 + 2*a^2*b^2
so a^4 +b^4 = 47
- 11 years agoHelpfull: Yes(0) No(0)
- ANS: 47
GIVEN:
a+b=3 -eq1
a^2+b^2=7 -eq2
TO FIND:
a^4+b^4=?
SOL:
eq2 can be written as:
a^2+b^2+2ab-2ab=7
9-2ab=7 from eq 1 a^2+b^2=9
ab=1
we know that:
(a^2+b^2)^2=a^4+b^4+2(ab)^2
(7)^2=a^4+b^4+2*1
a^4+b^4=47 - 11 years agoHelpfull: Yes(0) No(0)
TCS Other Question