KVPY
Government Jobs Exams
Logical Reasoning
Number Series
The number of natural numbers n in the interval [1005, 2010] for which the polynomial 1 + x + x^2 + x^3 + …. x^n–1
divides the polynomial 1 + x^2 + x^3 + x^4 + …. + x^2010 is-
(A) 0 (B) 100 (C) 503 (D) 1006
Read Solution (Total 1)
-
- (1+X^2+X^4+......+X^2010) ------------ POLYNOMIAL
(1+X^2+X^4+......+X^2010) ------>THIS IS A GP SERIES..... LETS FACTORISE THIS
= (1-(X^2)^1006))/(1-X^2) .......a(1-r^n)/(1-r)
(1-(X^2012))/(1-X^2)
(THIS IS OF THE THE FORM A^2-B^2=(A+B)(A-B))
[(1-(X^1006))((1+(X^1006))]/[(1-X)(1+X) ]
(WHICH IS AGAIN OF THE THE FORM A^2-B^2=(A+B)(A-B))
[(1-(X^503)) (1+(X^503)) ((1+(X)^1006))]/[(1-X)(1+X) ]
....... FROM THIS WE GET 2 GP SERIES
{
i.e [(1-(X^503))/(1-X)] = (1+X+X^2+X^3+X^4+......+X^502)
[(1+(X^503))/(1-X)] = (1-X+X^2-X^3+X^4+.....+X^502)
}
=[1+X^1006][(1+X+X^2+X^3+X^4+......+X^502) (1-X+X^2-X^3+X^4+......+X^502)]
^^^
|||
(1 + x + x^2 + x^3 + …. x^n–1) IS A FACTOR AS GIVEN IN QUESTION
( THEREFORE BY COMPARISON N=503) - 6 years agoHelpfull: Yes(2) No(0)
KVPY Other Question