TCS
Company
Find last digit.(1023^3923)+(3087^3927)
Read Solution (Total 9)
-
- The solution can derived as:
3923 % 4=3
3927 % 4=3 (also)
Now last digit of 1023 is 3, so 3^3923->3^(3923 % 4)->3^3=27(take last digit i.e 7)
Similarly,last digit of 3087 is 7, so 7^3927->7^(3923 % 4)->7^3=343(take last digit i.e 3)
Add 7+3= 10
(Take last digit of 10 i.e. 0)
Thus, the answer is 0.
- 11 years agoHelpfull: Yes(29) No(0)
- last digit of the exp will be same as the last digit of 3^3923 + 7^3927
3923=4*980+3 & 3927=4*981+3 so last digit of 3^3923 + 7^3927=last digit of 3^3 + 7^3
i.e 27+343
hence unit digit will be 7+3=10
ans is zero
- 11 years agoHelpfull: Yes(4) No(0)
- 3^3+7^7
=7+3
=10
so last digit of this equation is 0 - 11 years agoHelpfull: Yes(1) No(0)
- ans: 0
3^3=81 2*3=6
7^7=49 8*7=56
681+5649=last digit comes to 0 - 11 years agoHelpfull: Yes(0) No(0)
- 3^3923+7^3927=7+3=0
- 11 years agoHelpfull: Yes(0) No(0)
- 1023^3923= 7 last digit
3087^3927= 3 last digit
therefore,last digit is 0. - 11 years agoHelpfull: Yes(0) No(0)
- last digit will be :: 0
- 11 years agoHelpfull: Yes(0) No(0)
- last digit is 0
- 11 years agoHelpfull: Yes(0) No(0)
- 0 i s the answer !!!
- 11 years agoHelpfull: Yes(0) No(0)
TCS Other Question
If P(x)=ax^4+bx^3+cx^2+dx+e,has roots at x=1,2,3,4 and P(0)=48,what is P(5).
A series is given as 1,6,7,13,20,33,.......and so on Find the sum of first 52 terms