TCS
Company
What is the remainder when (31^31)^101 divided by 9?
Read Solution (Total 9)
-
- (31^3131)/9
=((27+4)^3131)/9
=(4^3131)/9
=(((4^3)^1043)*4^2)/9
=((64^1043)*16)/9
=((63+1)^1043)*16)/9
=((1^1043)*16)/9
=16/9
7 remainder ans.
shukriya kehne ki zarurat nhi hai.....bs duwaon mein yaad rkhna... - 11 years agoHelpfull: Yes(34) No(3)
- 31*101=3131
(27+4)^3131/9
4^3131/9
2^6262/9
(2^3)^2087*2/9
8^2087*2/9
(9-1)^2087*2/9
-1*2/9
-2/9
ans:9-2=7 - 11 years agoHelpfull: Yes(6) No(2)
- 31/9 gives remainder 4
4^31^101/9=(((4^(3*10)*4)^101/9=64/9 gives remainder 1
1^101=1 and again 4^101/9=(4^(3*33))*4^2/9=16/9=7 remainder - 11 years agoHelpfull: Yes(4) No(0)
- 4 would be the answer
- 11 years agoHelpfull: Yes(2) No(2)
- 31*101=3131
(31)/9=R(4)
thus (4)^3131=4
because (4)^odd=4.
hence ans=4 - 11 years agoHelpfull: Yes(1) No(5)
- #ans: 7
(using common division rules) - 11 years agoHelpfull: Yes(1) No(1)
- (31^31)101=31^3131
taking smallest ramainder dividing 31/9= 31^3131/9=4^3131/9
find out cyclicity
ist term 4/9=rem=4
second term 4^2/9=16/9=7
3rd term 4^3/9=7*4/9=1
since cylicity of 3
then 3131/3=2 term of cycleis reaminder=7
- 11 years agoHelpfull: Yes(1) No(1)
- 31^7 devided by 3 so 31^14 devided by 9,so ans is ZERO
- 11 years agoHelpfull: Yes(0) No(3)
- (((31)^31)^101)/9
=(((9*3+4)^31)^101)/9
=(((4)^31)^101)/9
=(((4^3)^10* 4)^101)/9
=(((64)^10*4)^101)/9
=(((9*7+1)^10*4)^101)/9
=((1^10*4)^101)/9
=((4^3)^33*4^2)/9
=((9*7+1)^33*16)/9
=((1^33)*16)/9= 16/9
Remainder = 7 - 11 years agoHelpfull: Yes(0) No(1)
TCS Other Question
60,48,38,28,24,20,18.Find the number in the series which is defective.
9.1,-2,3,-4,5,-6.......Find the average upto 200 terms.
Five balls of different colours was on five different stairs.What is the probability that there was a pink ball on 4th stair and red ball on 5th stair.