TCS
Company
(31^31)^728/9 remainder?
Read Solution (Total 13)
-
- (31^31)^728/9
= (4^31)^728/9
=(64^10*4)^728/9
=4^728/9
=64^242*16/9
=16/9
=7 - 11 years agoHelpfull: Yes(22) No(6)
- rem of ((31^31)^728)/9= 1
as 31^4= 29791 this when divided by 9 leaves 1 remainder.
as 728 is divisible by 4 therefore rem of ((31^31)^728)/9= 1
ans=1 - 11 years agoHelpfull: Yes(4) No(7)
- (((31)^31)^728)/9
=(((9*3+4)^31)^728)/9
=(((4)^31)^728)/9
=(((4^3)^10* 4)^728)/9
=(((64)^10*4)^728)/9
=(((9*7+1)^10*4)^728)/9
=((1^10*4)^728)/9
=((4^3)^242*4^2)/9
=((9*7+1)^242*16)/9
=((1^242)*16)/9
Remainder = 7 - 11 years agoHelpfull: Yes(4) No(0)
- 4. 31/9 gives 4.so ((4^3)^10)^728 /9 gives remainder 1 and rest 4^4.182 gives 4.4*1=4
- 11 years agoHelpfull: Yes(2) No(6)
- ans is 7 not 1
- 11 years agoHelpfull: Yes(2) No(0)
- (27+4)^31^728
since 27 is divisible completely by 9,we calculate remainder when 4^31^728 is divided by 9
4%9=4
4^2%9=7
4^3%9=1
4^4%9=4
and thus cycle repeats at 4,7,1
31*728=22568
22568%3=2
so ans would be 4^2 % 9=7 - 11 years agoHelpfull: Yes(2) No(0)
- sorry the remainder will be 7.
- 11 years agoHelpfull: Yes(1) No(2)
- 31*728 = 22568
now 31^22568
(27+4)^22568
=> 4^22568
2^45136
8^15042
(9-1)^15042
-1/9
= 8 ans - 11 years agoHelpfull: Yes(0) No(5)
- the remainder will be 9
- 11 years agoHelpfull: Yes(0) No(3)
- according to euler's theorem the asn is: 4
- 11 years agoHelpfull: Yes(0) No(1)
- ((3*9 +4)^31)^728
=(4^31)^728
=((4^4)^27)^728
=((63+1)^27)^728
=(1^27)^728
=1
- 11 years agoHelpfull: Yes(0) No(1)
- (31^31)^728/9=(31^31)^728/3*3=(1^31)^728/3=1/3=1. so ans is 1.
- 11 years agoHelpfull: Yes(0) No(1)
- --------correction in pervious ans---------
rem of ((31^31)^728)/9= 1
as 31^3= 29791 this when divided by 9 leaves 1 remainder.
as 728 is divisible by 3
(31^30)^728 * (31)^728= rem(1)* rem(1)
ans 1 - 11 years agoHelpfull: Yes(0) No(1)
TCS Other Question