Elitmus
Exam
y=(log (log a base p ) base a)/(log (log p base a) base p). find y?
Read Solution (Total 9)
-
- y=((log(log a base p))/log a)/((log(log p base a))/log p)
y=(log p(log log a - log log p))/(log a(log log p - log log a))
y= -(log p/log a)
y= - (log p base a) - 11 years agoHelpfull: Yes(13) No(2)
- ans is -1. since denominator = -(numerator).
- 11 years agoHelpfull: Yes(4) No(2)
- y=log p base a
- 11 years agoHelpfull: Yes(4) No(4)
- (log a base p)/(log a) =x;
(log p base a)/(log p) =y;
x/y=z;
z=log a base p; ans - 11 years agoHelpfull: Yes(2) No(1)
- each of the options contain log of something to the base something... so sry NAGA SARATH CHAND... yours wrong ans
- 11 years agoHelpfull: Yes(1) No(1)
- ne 1 plz solve this...
- 11 years agoHelpfull: Yes(0) No(0)
- Applying formula.... log x base y = log x base e/log y base e,
y=[log(log a base p)base e/log a base e] / [log(log p base a)base e/log p base e]
since,log (log a base p) base e = log a base p
=>y=(log a base p/log p base a)*(log p base e/log a base e)
=>y=[(log a base e/log p base e)/(log p base e/log a base e)]*(log p base e/log a base e)
=>y=log p base e/log a base e
=>y=log p base a
- 11 years agoHelpfull: Yes(0) No(1)
- ans is log p base a. u can check ur ans by substituting p=2 and a=4.
- 11 years agoHelpfull: Yes(0) No(0)
- y= log(log a base p base a)/log(log p base a base p)
y= log(log a/log p * log a/log p)/log(log p/log a * log p/log a)
y=log(log a/log p)/log(log p/log a)== -log(log p/log a)/log(log p/log a)=-1. - 11 years agoHelpfull: Yes(0) No(2)
Elitmus Other Question