Elitmus
Exam
If [x] is the greatest integer, less than or equal to x, then in [n^1/3]=5, n can take how many values
option
a. 91
b. 90
c. 3
d. 1
Ans. 91
Read Solution (Total 7)
-
- [n^1/3]=5
as 125^1/3=5,216^3=6
so value of n will be from 125 to 215(only these values satisfies the eqn)
no. of values=215-125+1=91 - 11 years agoHelpfull: Yes(29) No(7)
- given,[n^1/3]=5
if
n=125 then n^1/3=5 so [n^1/3]=5
n=126 then n^1/3=5.something so [n^1/3]=5
n=127 then n^1/3=5.something so [n^1/3]=5
...........
..............
.....................
similarly
n=215 then n^1/3=5.9 so [n^1/3]=5
n=216 then n^1/3=6 so [n^1/3]=6
so value of n will be from 125 to 215 becoz only these values satisfies the eqn
no. of values of n =215-125+1=91 - 11 years agoHelpfull: Yes(7) No(0)
- can u please explain it in detail. here y r u taking 216 only?
- 11 years agoHelpfull: Yes(1) No(0)
- according to the condition [x]
- 11 years agoHelpfull: Yes(1) No(0)
- according to the condition [x]
- 11 years agoHelpfull: Yes(0) No(0)
- rakesh you r wrng!!!! no other 1/3 != 5 , if you think you r correct than prove it
- 11 years agoHelpfull: Yes(0) No(1)
- 5
- 11 years agoHelpfull: Yes(0) No(0)
Elitmus Other Question