TCS
Company
Numerical Ability
Geometry
For a triangle, given length of one side=68 cm, second side= 32 cm. Area of the triangle= 960 sq. cm. Find the exact value of third side?
Read Solution (Total 4)
-
- we see 68^2-32^2=(68+32)*(68-32)=100*36=60^2
now (1/2)*60*32=960(match with given options)
(i.e area of a right angled triangle whose sides are 32,60,68)
third side=60 - 11 years agoHelpfull: Yes(36) No(1)
- We can solve it by Heron's formula. Here a=68 b=32 and c=? area is given 960
semi-perimeter s=(a+b+c)/3 and area T =sqrt[s*(s-a)*(s-b)*(s-c)]
modifying the formula for area we get
T = (1/4)*sqrt[4*a^2*b^2-(a^2 + b^2 - c^2)]-----eq1
solving eq1 by putting values of T(=960),a(=68),b(=32) we get
c=60cm
- 11 years agoHelpfull: Yes(8) No(2)
- how the formula is modified to T=(1/4)*sqrt[4a^b^2-(a^2+b^2-c^2)] please explain
- 10 years agoHelpfull: Yes(1) No(0)
- Using the formulas
A
=
s
(
s
﹣
a
)
(
s
﹣
b
)
(
s
﹣
c
)
s
=
a
+
b
+
c
2
There are 2 solutions for
c
c
=
a
2
+
b
2
+
2
(
a
b
)
2
﹣
4
A
2
=
32
2
+
68
2
+
2
·
(
32
·
68
)
2
﹣
4
·
960
2
≈
87.72685
c
=
a
2
+
b
2
﹣
2
(
a
b
)
2
﹣
4
A
2
=
32
2
+
68
2
﹣
2
·
(
32
·
68
)
2
﹣
4
·
960
2
=
60
- 10 years agoHelpfull: Yes(1) No(18)
TCS Other Question