Elitmus
Exam
Numerical Ability
Quadratic Equations
Q. What is the solution if i^i?
Read Solution (Total 11)
-
- i=cos(pi/2)+i*sin(pi/2)=e^(i*pi/2)
so i^i={e^(i*pi/2)}^i
=e^(i*i*pi/2)
=e^(i^2*pi/2)
=e^(-pi/2)
=cos(-pi/2)+i*sin(-pi/2)
=0+i*(-1)
=-i - 11 years agoHelpfull: Yes(44) No(3)
- ANS: -i
i=cos(90)+i*sin(90)=e^(i*90)
so i^i=e^(i*90*i)=e^(-90i)=cos(-90)+i*sin(-90)=-i. - 11 years agoHelpfull: Yes(6) No(0)
- i^i = e^(-pi/2)
- 11 years agoHelpfull: Yes(6) No(4)
- i^i=-1 i.e.,according to complex number analysis
- 11 years agoHelpfull: Yes(2) No(4)
- If iota, i = sqrt(-1)
Then, i^i = sqrt(-1) x sqrt(-1)
= -1 - 11 years agoHelpfull: Yes(1) No(2)
- i is root over -1. i sq is -1.
- 11 years agoHelpfull: Yes(1) No(0)
- The value of i^2 is -i
- 11 years agoHelpfull: Yes(1) No(1)
- i=cos(pi/2)+i*sin(pi/2)=e^(i*pi/2)
now,
i^i={e^(i*pi/2)}^i
=e^(i^2*pi/2)
=e^(-pi/2) [since i^2=-1]
=cosh(pi/2)-sinh(pi/2)
=0-1
i^i=-1.
WHICH IS REQUIRED VALUE OF i^i. - 11 years agoHelpfull: Yes(1) No(0)
- A)
cos@ + i.sin@ = e^(i.@)
if we take @ = pi/2:
i = e^(i.pi*/2)
Raise both sides to exponent i:
i^i = e^ (i.pi/2 . i)
i^i = e^(-pi/2)
- 11 years agoHelpfull: Yes(1) No(0)
- value is -1
- 11 years agoHelpfull: Yes(0) No(1)
- Thanq u rakesh and ranjit.
i am in favour of ur ans. - 11 years agoHelpfull: Yes(0) No(1)
Elitmus Other Question