Elitmus
Logical Reasoning
Coding Decoding
Q. What is maximum volume of right circular cone which can be cut from solid cuboid dimenssion 12*10*15
Option
1)100pi
2)120pi
3)125pi
4)225pi
Read Solution (Total 11)
-
- from the given dimensions ..we will get h=15,r=5(10/2)
volume=pi(5*5)(15/3)
=125pi
any one with same ans - 11 years agoHelpfull: Yes(42) No(4)
- 125pi is the correct answer.... we have three dimensions,, thus for the frst face of the cuboid (10 x 12) as the base then the diameter of the circle is 10 unit (not 12 units as it shud be inside the rectangle) so vol. is 1/3*pi*(5)^2*15 = 125pi.. now the secnd face of the cuboid on which the base of cone can reside let be 12 x 15 face ,,,, so the radius diameter here will be 12 only not 15 ,, (same reason),, so vol be 1/3*pi*(6^2)*10 and for the next face (15 x 10) the vol will be 100pi ,,,, so the max volume can be 125pi
- 11 years agoHelpfull: Yes(17) No(2)
- max v= 225pi
h=12
r=7.5
v =1/3*pi*(7.5)^2*12
=1/3*pi*675
=225pi. - 11 years agoHelpfull: Yes(11) No(17)
- for maximum volume we have to take maximum of the cuboid dimensions for height and it is 15. height of cone = 15
and for radius the maximum can be min(10,12)/2.
so radius=5.
volume of cone=(1/3)*pi*(5*5)*15=125pi - 11 years agoHelpfull: Yes(7) No(1)
- h=15
r=5(10/2)
volume=(15/3)*(5*5)=125pi - 11 years agoHelpfull: Yes(2) No(1)
- here given that l=12,b=10,h=15
so volume of circular cone =1/3pi*r^2*h
h=15 and d=b=10 so r=10/2=5
hence volume will be 125pi - 10 years agoHelpfull: Yes(1) No(1)
- H=15
r=10/2
Volume of cone=5^2*15pi/3=125pi - 9 years agoHelpfull: Yes(1) No(0)
- 2) 120pi
(1/3)pi(12/2)^2*10 - 11 years agoHelpfull: Yes(0) No(2)
- 125pi with the help of multiplication
- 10 years agoHelpfull: Yes(0) No(2)
- 3. 125pi
Since l=12 (given)
b=10 (given)
& h=15 (given)
hence radius of the base will be 5 atmost.
Hence volume of the cone will be
1/3 X pi X 5X5 X 15 = 125 Pi.
- 10 years agoHelpfull: Yes(0) No(1)
- 120pi
15 is slant height
1/3*pi*6^2*10 - 10 years agoHelpfull: Yes(0) No(1)
Elitmus Other Question