TCS
Company
Numerical Ability
Sequence and Series
1(2)+2(2)^2+3(2)^3+.......+100(2)^100
Read Solution (Total 8)
-
- ------correction for previous answer------
S=1(2)+2(2)^2+3(2)^3+.......+100(2)^100
(-)2*S= 1(2)^2+2(2)^3+.......+99(2)^100+100(2)^101
-------------------------------------------------------
=>S-2S=2+2^2+2^3+2^4+.........+2^100-100*2^101
=> -S=2(2^100-1)/(2-1)-100*2^101
=> S=100*2^101-2(2^100-1)
=> S=100*2^101-2^101+2
=> S=99*2^101+2
- 10 years agoHelpfull: Yes(22) No(4)
- s=1(2)+2(2)^2+3(2)^3+......+100(2)^100
2s= 1(2)^2 + 2(2)^3 + 3(2)^4 + .....+ 99(2)^100 + 100(2)^101
s-2s = [1(2) + 1(2)^2 + 1(2)^3 + ....+ 1(2)^100 ]- 100(2)^101
-s= 2(2^100 -1 / 2-1 ) - 100(2)^101
-s= 2^101 - 2 - 100(2)^101
s= -2^101 + 2 + 100(2)^101
s= (100-1)2^101 +2
s= 99(2)^101 +2 - 10 years agoHelpfull: Yes(4) No(0)
- But the options were
a. 99(2)^100+2
b. 100(2)^100+2
c. 101(2)^100+2
d. 101(2)^101+2 - 10 years agoHelpfull: Yes(3) No(1)
- S=1(2)+2(2)^2+3(2)^3+.......+100(2)^100
(-)2*S= 1(2)^2+2(2)^3+.......+99(2)^100+100(2)^101
---------------------------------------------------
S-2S=2+2^2+2^3+2^4+.........+2^100-100*2^101
=> -S=2(2^100-1)/(100-1)-100*2^101
=> S=100*2^101-(2/99)(2^100-1) - 10 years agoHelpfull: Yes(1) No(2)
- this solutions are so confusing can any one explain this concept by taking a simple example....
- 10 years agoHelpfull: Yes(1) No(0)
- pls explain it didnt get it
- 10 years agoHelpfull: Yes(0) No(0)
- If the options are-
a. 99(2)^100+2
b. 100(2)^100+2
c. 101(2)^100+2
d. 101(2)^101+2
Then it is a dummy question. Dont answer this questions. - 10 years agoHelpfull: Yes(0) No(0)
- can you plzz give clear solution off.. it.. i didnt get it rakesh cn u explain it
- 10 years agoHelpfull: Yes(0) No(0)
TCS Other Question