TCS
Company
Logical Reasoning
Number Series
A two digit no is 18 less than square of the sum of its digit. How many such no are there..??
Read Solution (Total 4)
-
- let a two digit number be (10x+y), x=tenth digit & y=unit digit
Given,
10x+y=(x+y)^2-18
(x+y)^2 should be less than 118 & greater than 28 to be two digit no.
(x+y)^2 may be 100,81,64,49,36
(x+y)^2 -18 = 10x+y
check for these
1. 100-18 = 82 => (82+18)=(8+2)^2
2. 81 -18 = 63 => (63+18)=(6+3)^2
3. 64 -18 = 46 => (46+18)=(4+6)^2 [not satisfied]
4. 49 -18 = 31 => (31+18)=(3+1)^2 [not]
5. 36 -18 = 18 => (18+18)=(1+8)^2 [not]
Hence, only 2 numbers are possible
82 & 63 - 10 years agoHelpfull: Yes(44) No(3)
- 1234+6543=11110
- 10 years agoHelpfull: Yes(0) No(6)
- 63 & 82 are the no.s
2 ans
- 10 years agoHelpfull: Yes(0) No(0)
- short trick plz
- 10 years agoHelpfull: Yes(0) No(0)
TCS Other Question