TCS
Company
Numerical Ability
Arithmetic
Find the value of "n" where 3^48 + 3^1996 +3^3943+3^3n.
Read Solution (Total 6)
-
- 3^48 + 3^1996 + 3^3943 + 3^3n
= (3^16)^3 + 3*(3^16)^2*3^n + 3*3^16*(3^n)^2+ (3^n)^3 -----(1)
also (1) has the form of (a+b)^3 =
a^3 + 3*a^2*b + 3*a*b^2 + b^3 -------(2)
from (1) & (2)
=> 3*(3^16)^2*3^n=3^1996
=> 3^(33+n)=3^1996
=> (33+n)=1996
=> n=1963
- 10 years agoHelpfull: Yes(27) No(2)
- (3^16 ) ^3+3^1996+3^3943+(3^n)^3
So it is equivalent to a^3+3a^2b+3ab^2+b^3
So,3*(3^16)^2*3^n=3^1996
3^(33+n)=3^1996
n=1963 - 10 years agoHelpfull: Yes(4) No(0)
- Is this question complete??
- 10 years agoHelpfull: Yes(1) No(0)
- dif is 1948 thn 1947 so third must be 1946.
now 3^(3943+1946)=3^(5889)=3^(3*1963)
so n=1963 - 10 years agoHelpfull: Yes(1) No(1)
- @vikram no the question is not incomplete
ans is 1963 as all solved above.. - 10 years agoHelpfull: Yes(0) No(0)
- @rakesh : bingo★
- 10 years agoHelpfull: Yes(0) No(0)
TCS Other Question