TCS
Company
Numerical Ability
Number System
Number of prime factors in (216) 3⁄5 x (2500) 2⁄5 x (300) 1⁄5 is :
1) 3
2) 4
3) 6
4) 7
Read Solution (Total 9)
-
- ans 3
2,3 and 5 - 10 years agoHelpfull: Yes(5) No(1)
- can any one explain it please i didn't get it
- 10 years agoHelpfull: Yes(2) No(1)
- 216=2^3*3^3
2500=5^4*2^2
300=2^2*5^2
after minimizing we get 2^(9/5+2/5+4/5)*3^(9/5+1/5)*5^(8/5+2/5)
=2^3*3^2*5^2
=2,3,5 - 10 years agoHelpfull: Yes(2) No(1)
- (6^3)^3/5 * (5^2 * 10^2)^2/5 *(3*10^2)^1/5
(2^3 * 3^3)^3⁄5 * (5^4 * 2^2)^2/5 * (3* 5^2* 2^2)^1/5
.'. (2)^ 9/5+4/5+2/5 * (3)^9/5+1/5 * (5)^8/5+2/5
2^3 * 3^2 * 5^2
Now, add power of numbers
3+2+2=7
therefore, number of prime factor is 7
ans. option 4) 7 - 4 years agoHelpfull: Yes(1) No(0)
- 3 prime factors are(2,3,5)
- 10 years agoHelpfull: Yes(0) No(0)
- answer is 1)3
- 10 years agoHelpfull: Yes(0) No(0)
- ans 3
2,3,5 - 10 years agoHelpfull: Yes(0) No(0)
- it can be easily solved as:
[(6^3)^(3/5)]*[(50^2)^(2/5)]*(30*10)^(1/5)
after solving it we will get->[(2*3)^5]*[(5*10)^5]*[(2^3*5^2)^5]
and we can see that the prime factors in the above equation->2,3,5
Ans:3 - 10 years agoHelpfull: Yes(0) No(0)
- the answer is:7
- 6 years agoHelpfull: Yes(0) No(0)
TCS Other Question