TCS
Company
Numerical Ability
Trigonometry
An isosceles triangle with sides 13cm,13cm and base of 10cm is inscribed in a circle with radius r.what is the value of 'r'?
Read Solution (Total 8)
-
- height of triangle = (13^2 - (10/2)^2)^1/2 = 12 cm
area of triangle = abc/4r = (1/2)*base*height
=> 13*13*10/ 4r = 1/2 *10*12
=> r = 169/24 = 7.04 - 10 years agoHelpfull: Yes(23) No(2)
- http://mathhelpforum.com/geometry/187370-proof-isosceles-triangle-inscribed-circle.html
- 10 years agoHelpfull: Yes(3) No(0)
- R = abc/4rs is the formula when triangl inscribes inside a cirlce
- 10 years agoHelpfull: Yes(3) No(0)
- Is r= 7.01cm??
- 10 years agoHelpfull: Yes(1) No(0)
- 160.24 is the answer among given options.
- 10 years agoHelpfull: Yes(0) No(4)
- The circumradius of an isosceles triangle
a^2/2(a^2-b^2/4)^1/2
169/2(169-25)^1/2=7.04
- 10 years agoHelpfull: Yes(0) No(0)
- 0.3 cm?
r=s/area - 6 years agoHelpfull: Yes(0) No(0)
- a=13,b=13,c=10
s =(a+b+c)/2 = (13+13+10)/2=18
area of triangle=[s(s-a)(s-b)(s-c)]^1/2
=[18(18-13)(18-13)(18-10)]^1/2
= (18*5*5*8)^(1/2)
=60 cm^2
let r be the radius,then
r=(a*b*c)/(4*area of triangle)
r=(13*13*10)/(4*60)= 7.04cm - 6 years agoHelpfull: Yes(0) No(0)
TCS Other Question