Tech Mahindra
Company
Numerical Ability
Arithmetic
The arithmatic mean of 2 no is 34 and geomatric mean of two no is 16 then nos will be
Read Solution (Total 11)
-
- Let the 2 nos. be 'a' and 'b'
Arithmetic mean=(a+b)/2=34 i.e. a+b=68 -----------eqn.1
Geometric mean=(ab)^(1/2)=16 i.e. ab=256
a-b=[(a+b)^2}-4ab]^(1/2)
or, a-b= [(68^2)-(4*256)]^(1/2)=60-------------------eqn.2
Solving eqn.1 &2 we get--
a=64 & b=4
Answer: two nos are 64 & 4 - 10 years agoHelpfull: Yes(42) No(1)
- A.M of a and b=>(a+b)/2=34=> a+b=68---(1)
G.M of a and b=>sqrt(a,b)=16=> ab=256
(a-b)^2=(a+b)^2-4ab= (68)^2-(4*256)=>4624-1024=> 3600
(a-b)^2=3600=> a-b=60------(2)
Solving (1) and (2), we get
b=4, a=64 - 10 years agoHelpfull: Yes(9) No(0)
- use the options, it will be quicker :P
- 10 years agoHelpfull: Yes(7) No(0)
- let nos are a,b
so A.M = (a+b)/2= 34
-----> a+b=68
G.M. sqrrot of ab=16
-----> ab=16*16
soving them a=64, b=4 - 10 years agoHelpfull: Yes(4) No(1)
- a+b /2 =34
(ab)^1/2 =16
taking different case of a and b we gt a=4 b=64 - 10 years agoHelpfull: Yes(1) No(0)
- i think it can be 2 solutions
a=4 and b=64
a=64 and b=4
if i take 1 case
a+b/2 that is 4+64/2=34
sqrt(4*64)=16
if i take 2 case
a+b/2 ie 64+4/2=34
sqrt(64*4)=16 - 10 years agoHelpfull: Yes(1) No(1)
- From experience the equation will be
a^2-(34x2)a+16^2=0
a^-68a+256=0
Solving..
a = 4 or 64
That's the two numbers. - 10 years agoHelpfull: Yes(0) No(0)
- (X+Y)/2 = 34
SQRT(XY)= 16
(X-Y)^2= (X+Y)^2 - 4XY
ANS = 4 AND 64 - 10 years agoHelpfull: Yes(0) No(0)
- arithmatic mean (a+b)/2=34
geometric mean sqrt(ab)=16
so
a+b=68
ab=16*16 that is 16*4*4 = 64*4( its sum is 68)
so the numbers are 64 and 4 - 10 years agoHelpfull: Yes(0) No(0)
- x+y/2=34;xy^1/2=16
x,y=4,64 or 64,4 - 10 years agoHelpfull: Yes(0) No(0)
- a+b=68 -->equ 1
ab=256 -->equ 2
b=256/a
sub b in 1
a+256/a=68
a^2 + 256=68a
a^2-68a+256=0
a=4 or 64
ans : a= 4, b=64 or a=64 ,b=4 - 10 years agoHelpfull: Yes(0) No(0)
Tech Mahindra Other Question