3i-Infotech
Company
Numerical Ability
Interview
How many prime factors in 25^10 * 36^10 * 20^10 ?
Read Solution (Total 3)
-
- 25^10 * 36^10 * 20^10
=(5*5)^10 * (2*2*3*3)^10 * (2*2*5)^10
=(5^10 * 5^10) * (2^10 * 2^10 * 3^10 * 3^10) * (2^10 * 2^10 * 5^10)
=5^30 * 2^40 * 3^20
number of distinct prime factors = 3
number of prime factors = 30+40+20 = 90 - 10 years agoHelpfull: Yes(10) No(0)
- 25^10* 36^10* 20^10
= (5*5)^10 *(3*3*2*2)^10 * (5*2*2)^10
= 5^10 * 5^10 * 3^10 * 3^10 * 2^10* 2^10 * 5^10 * 2^10 * 2^10
so, total number of prime factors= 10*9= 90 - 10 years agoHelpfull: Yes(2) No(0)
- 5^20 * 3^20 * 2^20 * 2^10 * 2^10 * 5^10
so 20+20+20+10+10+10=90 - 10 years agoHelpfull: Yes(1) No(0)
3i-Infotech Other Question