Maths
Maths Puzzle
Numerical Ability
Number System
Find the remainder when 1^2+11^2+111^2+1111^2+...+(2001 times 1)^2
is divided by 100.
Read Solution (Total 4)
-
- 1^2+11^2+111^2+1111^2+...+(2001 times 1)^2
11^2=121
111^2=12321
1111^2=1234321
every term have reminder 21 when divide by 100
remainder =21*2000+1( 1 in first term)=42001
rem=42001/100
ans=1
so final ans is 1 - 10 years agoHelpfull: Yes(9) No(2)
- ans:1
(1+11^2+111^2+1111^2+....+(2001 times 1)^2)%100
= (1+121+12321+1234321+.....+123...321)%100
= (1+100+21+12300+21+1234300+21+.....123...4300+21)%100
= (1+21*2000 + 100 + 12300+1234300+....+1234...4300)%100
= (1 + 0 + 0 + 0+....+0)
= 1 - 10 years agoHelpfull: Yes(7) No(3)
- answer:22
(1^2+11^2+...........)%100
=1+21+21+21+.........upto 2001 times...(bcz 11*11%100=21,111*111%100=21, so on )
={1+21*((2000)*2001)/2}%100
={1+21*1000*2001}%100
=1+21*1(bcz 1000%100=0,2001%100=1)
=22
So answer is 22 - 10 years agoHelpfull: Yes(0) No(4)
- unit place 1 so 1
- 9 years agoHelpfull: Yes(0) No(0)
Maths Other Question