CTS
Company
Numerical Ability
Trigonometry
greatest value of 9cos^2x+4sin^2x is
Read Solution (Total 7)
-
- 9cos^2x+4sin^2x
9(1 - sin^2x) + 4sin^2x
9 - 9sin^2x + 4sin^2x
9 - 5sin^2x
Sin^2nx ranges from 0 < Sin^2nx < 1
(ie) Min value = 0, Max value = 1
So max value = 9 - 5*0 = 9
- 10 years agoHelpfull: Yes(15) No(1)
- If Y = 9cos^2x + 4sin^2x
= 5cos^2x + 4cos^2x + 4sin^2x
= 5cos^2x + 4(cos^2x + sin^2x)
= 5cos^2x + 4
Y = (4 + 5cos^2x)
maxm value of cos^2x is 1
so, Y max = 4 + 5*1 = 9 - 10 years agoHelpfull: Yes(11) No(0)
- 9cos^2x+4sin^2x
9(1 - sin^2x) + 4sin^2x
9 - 9sin^2x + 4sin^2x
9 - 5sin^2x
Sin^2nx ranges from 0 < Sin^2nx < 1
(ie) Min value = 0, Max value = 1
So 9 - 5(1) = 4
Ans : 4 - 10 years agoHelpfull: Yes(2) No(6)
- 9cos^2x+4sin^2x=5cos^2x+4(sin^2x+cos^2x)=5cos^2x+4=5+4(since max value of cos=1)=9
- 10 years agoHelpfull: Yes(1) No(0)
- 9cos^2x+4sin^2x
9(1 - sin^2x) + 4sin^2x
9 - 9sin^2x + 4sin^2x
9 - 5sin^2x
Sin^2nx ranges from 0 - 10 years agoHelpfull: Yes(0) No(1)
- 9cos^2x+4sin^2x
9(1 - sin^2x) + 4sin^2x
9 - 9sin^2x + 4sin^2x
9 - 5sin^2x
Because Sin^2nx varies from 0 < Sin^2nx < 1
hence min{sin^x}=0
i.e. max value of given expression is 9
- 10 years agoHelpfull: Yes(0) No(0)
- 9cos^2x+4sin^2x
=(5 cos^2x + 4cos^2x) + 4sin^2x
=5cos^2x+ 4 ( cos^2x+sin^2x)
=5cos^2x+ 4*1
now, max value of cos@=1
so max value= 5*1+4 = 9 ANS - 10 years agoHelpfull: Yes(0) No(0)
CTS Other Question