TCS
Company
Numerical Ability
Number System
Find the number of zero’s in 173! (173 Factorial)
Read Solution (Total 13)
-
- no of zeroes in 173! is
173/5=34(quotient)
34/5=6(quotient)
6/5=1(quotient)
34+6+1=41
ans 41 zeroes - 10 years agoHelpfull: Yes(53) No(0)
- no. of zeroes in n! = [n/5]+[n/5^2]+[n/5^3]+...
number of zero’s in 173! = [173/5]+[173/5^2]+[173/5^3]+[125/5^4]= 34+6+1+0 = 41 - 10 years agoHelpfull: Yes(30) No(6)
- Ans:41
NO of zero’s in 173! = [173/5]+[173/5^2]+[173/5^3]+[125/5^4]= 34+6+1+0
- 10 years agoHelpfull: Yes(2) No(1)
- 173/5+173/25+173/125=34+6+1=41
- 10 years agoHelpfull: Yes(2) No(0)
- If you have count the number of zero's in n!
n/5+n/(5^2)+n/(5^3)...
173/5+173/25+173/125=34+6+1=41 - 10 years agoHelpfull: Yes(1) No(0)
- 173!=173%5+173%25+175%125=34+6+1=41
- 10 years agoHelpfull: Yes(1) No(0)
- 173/5+173/25+173/125
Taking the quotient
34+6+1=41 - 10 years agoHelpfull: Yes(0) No(0)
- 173/5=34
173/25=6
173/125=1
34+6+1=41 - 10 years agoHelpfull: Yes(0) No(0)
- 173/5=34
34/5=6
6/5=1
so 34+6+1=41 zeroes - 10 years agoHelpfull: Yes(0) No(0)
- 173/5+173/25+173/125
Taking the quotient
34+6+1+0=41 - 10 years agoHelpfull: Yes(0) No(0)
- 52 no of zeros.
- 10 years agoHelpfull: Yes(0) No(6)
- 173/5 quotient=34
34/5 quotient=6
6/5 quotient=1
hence the number of zeroes=34+6+1=41 - 10 years agoHelpfull: Yes(0) No(0)
- 41
10=2*5
(173/5)+(173/25)+(173/125)=34+6+1=41
- 10 years agoHelpfull: Yes(0) No(0)
TCS Other Question