Elitmus
Exam
Numerical Ability
Arithmetic
a^2 + b^2 = 1/4
where a and b are integral values what would be the value of a and b for ab to be minimum?
A) 1/sqrt8
B) -1/sqrt8
C) -1/8
D) 0
Read Solution (Total 10)
-
- 2ab =(a+b)^2 - (a^2+b^2)
=> ab = 1/2*(a+b)^2 - 1/2*(a^2+b^2)
=> ab = 1/2*(a+b)^2 - 1/8
as, 1/2*(a+b)^2 > 0 for any a,b
for ab to be minm 1/2*(a+b)^2 = 0 => a+b=0 => b=-a
& minm value of ab = -1/8
a^2 + b^2 = 1/4
=> 2*a^2 = 1/4
=> a^2 = 1/8
=> a = 1/sqrt8 , -1/sqrt8
however, a^2 + b^2 = 1/4 is not possible for any integral values of a & b.
minm value of ab = -1/8 for (a,b)= (1/sqrt8 , -1/sqrt8) or (-1/sqrt8 , 1/sqrt8)
- 10 years agoHelpfull: Yes(16) No(2)
- a^2+b^2=1/4
we can write above as
=> (a+b)^2-2ab=1/4
=>2ab=(a+b)^2-1/4
=>ab= [(a+b)^2-1/4]/2
now,
ab is minimum when a+b=0 =>b= -a
so ab= -1/8
=> a(-a)=-1/8
=>-a^2=-1/8
=>a^2=1/8
=>a= +- 1/sqrt8
but in this problem a= 1/sqrt8
because in question it was mention that b - 10 years agoHelpfull: Yes(9) No(0)
- c) -1/8
here ab=1/2*(a+b)^2-1/8
so the 1st term i.e. 1/2*(a+b)^2 can never be negative so minimum value of this should be 0 for this. so min value for ab is -1/8
But the fact is a and b cannot be integers bcoz then a^2+b^2 can never be eaqual to 1/4 - 10 years agoHelpfull: Yes(1) No(0)
- A)1/sqrt(8)
- 10 years agoHelpfull: Yes(1) No(0)
- 1/sqrt8 is the answer
- 10 years agoHelpfull: Yes(1) No(0)
- C is the correct answer
- 10 years agoHelpfull: Yes(0) No(0)
- for this que if we go through the options
then, for A>
b^2 = 1/4 - 1/8
b = 1/ sqrt8 so, ab = 1/8
for B>
b^2 = 1/4- 1/8
b = 1/sqrt8 so, ab = -1/8
for C>
b^2 = 1/4 - 1/64
b = sqrt(15/64) = sqrt(15)/8
so, ab = -sqrt(15)/64
for D>
ab = 0
so from all the options
A > D > B > C
so for ab to be minimum ans = C> -1/8 - 10 years agoHelpfull: Yes(0) No(0)
- now continue from my above answer
ant it was mention in question that b - 10 years agoHelpfull: Yes(0) No(0)
- for two nos x and y ..A.M(x,y)>= G.M.(x,y)
put x= a^2,y =b ^2..
(a^2+b^2)/2 >= sqrt(a^2*b^2);
1/8 >=sqrt(a^2*b^2);
sqrt(1/8)>=|ab|;
hence ab belongs to {-sqrt(-1/8),sqrt(1/8)};
- 10 years agoHelpfull: Yes(0) No(0)
- (a+b)^2=a^2+b^2+2ab
(a+b)^2>=0
a^2+b^2+2ab>=0
1/4+2ab>=0
ab>= - 1/8 - 9 years agoHelpfull: Yes(0) No(0)
Elitmus Other Question