CAT
Exam
Numerical Ability
Number System
What will be remainder when N=10^10+ 10^100 + 10^1000+ 10^10000..........+10^10000000000 is divided by 7
Read Solution (Total 3)
-
- 10^10+ 10^100 + 10^1000+ 10^10000..........+10^10000000000 % 7
Means 10^10%7 + 10^100%7 + 10^1000%7 + ...
10^1 % 7 = 3
10^2 % 7 = 2
10^3 % 7 = 6
10^4 % 7 = 4
10^5 % 7 = 5
10^6 % 7 = 1
10^7 % 7 = 3 [Again it goes on like 2,6,4,5,1,etc]
So cycle is upto the power of 6... So R[N % 7] is 6k+n...
10 => 6*1 + 4 ... R[10^10 % 7] = 4
100 => 6*16+4 ... R[10^100 % 7] = 4
1000 => 6*166+4 ... R[10^1000 % 7] = 4
So For all the powers of 10^(10^n), 4 is the remainder...
[4+4+4+4+4...+4]%7
10*4 % 7
40 % 7
5 % 7
Ans : 5 - 10 years agoHelpfull: Yes(29) No(1)
- Answer is damn right i.e. 5
I used the following method:
Acc to Fermat Little theorem Rem[M^(N-1)/N]=1 like Rem[10^6/7]=1
So here we have Rem[10^10/7]=>Rem[10^6*10^4/7]=>Rem[10^4/7]=>Rem[3^4/7]=4
Similarly other terms too give Remainder 4
Total Remainder=4*10 times=40
Rem[40/7]=5
Hence 5 Answer.
Bingo !! - 10 years agoHelpfull: Yes(5) No(0)
- if you use a calculator 10^10 , 10^100 , 10^1000 and so on all leave a remainder of 4 when divided by 7.
so the final remainder is the remainder of 4 * 10 by 7 = 5 - 7 years agoHelpfull: Yes(0) No(0)
CAT Other Question