Elitmus
Exam
Numerical Ability
Arithmetic
. If 1/a + 1/b + 1/c = 1/(a+b+c) where a + b + c != 0 , abc != 0, what is the value of (a+b)(b+c)(c+a)?
A. Equals 0
B. Greater than 0
C. Less than 0
D. Cannot be determined
Read Solution (Total 12)
-
- first solve the eq-
1/a+1/b+1/c=1/(a+b+c)
=>(bc+ac+ab)/abc=1/(a+b+c)
=>(a+b+c)(bc+ac+ab)=abc
=>abc+a^2c+a^2b+b^2c+abc+ab^2+bc^2+ac^2+abc=abc
=>2abc+a^2c+a^2b+b^2c+ab^2+bc^2+ac^2=0 ----eq (1)
Now solve the eq-
(a+b)(b+c)(c+a)
=>(ab+ac+b^2+bc)(c+a)
=>abc+a^b+ac^2+a^2c+b^2c+b^2a+bc^2+abc
=>2abc+a^b+ac^2+a^2c+b^2c+b^2a+bc^2 ---eq(2)
Now compare eq(1) and eq(2)
Since both are equal ao we conclude that
(a+b)(b+c)(c+a)=0
So the ans is optn (a)
- 10 years agoHelpfull: Yes(30) No(1)
- put a=1,b=-1,c=1 then 1/a+1/b+1/c=1 and 1/(a+b+c)=1
so (a+b)(b+c)(c+a)=0 ans - 10 years agoHelpfull: Yes(7) No(8)
- Since abc != 0 and a+b+c !=0 ; when we take modify the term 1/a + 1/b + 1/c = 1/(a+b+c) , we can simply multiply (a+b+c) and abc on numberator. That will yield us, (a+b+c)(bc+ca+ab) = abc or 2abc + a^2(b+c) + b^2(a+c) + c^2(a+b) = 0;
when we simplify (a+b)(b+c)(c+a), we get 2abc + a^2(b+c) + b^2(c+a) +c^2(a+b) . So, the answer is simply 0. - 10 years agoHelpfull: Yes(2) No(2)
- equals to zero.
first solve the eq-
1/a+1/b+1/c=1/(a+b+c)
=>(bc+ac+ab)/abc=1/(a+b+c)
=>(a+b+c)(bc+ac+ab)=abc
=>abc+a^2c+a^2b+b^2c+abc+ab^2+bc^2+ac^2+abc=abc
=>2abc+a^2c+a^2b+b^2c+ab^2+bc^2+ac^2=0 ----eq (1)
Now solve the eq-
(a+b)(b+c)(c+a)
=>(ab+ac+b^2+bc)(c+a)
=>abc+a^b+ac^2+a^2c+b^2c+b^2a+bc^2+abc
=>2abc+a^b+ac^2+a^2c+b^2c+b^2a+bc^2 ---eq(2)
Now compare eq(1) and eq(2)
Since both are equal ao we conclude that
(a+b)(b+c)(c+a)=0
So the ans is optn (a) - 10 years agoHelpfull: Yes(2) No(0)
- let S=(a+b)(b+c)(c+a)
putting different values of a,b,c in 'S' we will get different values of it.
like putting a=3,b=-1,c=-1 we get -ve value of S.
if we put a=1,b=-1,c=1 we get S=0
we will get different values of 'S' changing the values of a,b,c satisfying the equations a+b+c!=0 and abc!=0
so answer may be option D. - 10 years agoHelpfull: Yes(1) No(2)
- Ans will be B
- 10 years agoHelpfull: Yes(0) No(1)
- a equals 0
- 10 years agoHelpfull: Yes(0) No(1)
- b) greater then 0
- 10 years agoHelpfull: Yes(0) No(1)
- c less than 0
- 10 years agoHelpfull: Yes(0) No(1)
- A.equals 0
- 10 years agoHelpfull: Yes(0) No(2)
- equal to 0...assume a=-1,b=1,c=1
- 9 years agoHelpfull: Yes(0) No(0)
- 1/a + 1/b + 1/c =1/ (a+b+c)
=> 1/a + 1/b =1/ (a+b+c) - 1/c
=> (b+a)/ab = (c - (a+b+c)) / c(a+b+c)
Cross multiplying (Since, a,b,c !=0 and a+b+c != 0)
=> c(a+b+c)(b+a) = - ab(a+b)
=> (a+b)( ca +cb +cc + ab ) = 0
=> (a+b)( ca + cc + cb + ab) = 0
=> (a+b)(b+c)(c+a)=0 - 9 years agoHelpfull: Yes(0) No(0)
Elitmus Other Question