Elitmus
Exam
Numerical Ability
Algebra
If v,w,x,y,z are non negative interger each less than 11.then how many distinct combination of (v,w,x,y,z) satisfy
v(11^4) + w(11^3) + x(11^2) + y(11) + z = 151001
Read Solution (Total 7)
-
- v(11^4)+w(11^3)+x(11^2)+y(11)+z= 151001=> 11*( v*11^3 + w*11^2+ x*11 + y ) + z = 11*13727 + 4 => ( v*11^3 + w*11^2+ x*11 + y )= 13727 & z = 4 => 11*( v*11^2 + w*11 + x ) + y = 11*1247 + 10 => ( v*11^2 + w*11 + x )= 1247 & y = 10=> 11*( v*11 + w ) + x = 11*113 + 4=> ( v*11 + w )= 113 & x = 4=> ( v*11 + w ) = 11*10 + 3=> v = 10 & w = 3so, v=10, w=3, x=4, y=10 ,z=4(v,w,x,y,z)=(10,3,4,10,4)
- 10 years agoHelpfull: Yes(30) No(2)
- by solving we got v=10,w=3,x=4,y=10,z=4.. so ans is one
- 10 years agoHelpfull: Yes(7) No(0)
- nalini they asked distinct combination not distinct value of v & y
so only one such combination is possible. - 10 years agoHelpfull: Yes(5) No(0)
- jo bhi ho bhaad main jao
lekin yeh problem mujhe samjhao - 10 years agoHelpfull: Yes(2) No(3)
- shilpy they are asking about distinct values then v and Y wont be same Right
- 10 years agoHelpfull: Yes(1) No(1)
- plz expln method .
- 10 years agoHelpfull: Yes(0) No(1)
- Answer should be (v,w,x,y,z) = (10,3,4,8,6)
- 9 years agoHelpfull: Yes(0) No(1)
Elitmus Other Question